XXE DoS and .Net

May 6, 2019 by · Comments Off on XXE DoS and .Net
Filed under: Development, Security 

External XML Entity (XXE) vulnerabilities can be more than just a risk of remote code execution (RCE), information leakage, or server side request forgery (SSRF). A denial of service (DoS) attack is commonly overlooked. However, given a mis-configured XML parser, it may be possible for an attacker to cause a denial of service attack and block your application’s resources. This would limit the ability for a user to access the expected application when needed.

In most cases, the parser can be configured to just ignore any entities, by disabling DTD parsing. As a matter of fact, many of the common parsers do this by default. If the DTD is not processed, then even the denial of service risk should be removed.

For this post, I want to talk about if DTDs are parsed and focus specifically on the denial of service aspect. One of the properties that becomes important when working with .Net and XML is the MaxCharactersFromEntities property.

The purpose of this property is to limit how long the value of an entity can be. This is important because often times in a DoS attempt, the use of expanding entities can cause a very large request with very few actual lines of data. The following is an example of what a DoS attack might look like in an entity.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [ <!ELEMENT foo ANY >
<!ENTITY dos 'dos' >
<!ENTITY dos1 '&dos;&dos;&dos;&dos;&dos;&dos;&dos;&dos;&dos;&dos;&dos;&dos;' >
<!ENTITY dos2 '&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;&dos1;' >
<!ENTITY dos3 '&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;&dos2;' >
<!ENTITY dos4 '&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;&dos3;' >
<!ENTITY dos5 '&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;&dos4;' >
<!ENTITY dos6 '&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;&dos5;' >]>

Notice in the above example we have multiple entities that each reference the previous one multiple times. This results in a very large string being created when dos6 is actually referenced in the XML code. This would probably not be large enough to actually cause a denial of service, but you can see how quickly this becomes a very large value.

To help protect the XML parser and the application the MaxCharactersFromEntities helps limit how large this expansion can get. Once it reaches the max amount, it will throw a System.XmlXmlException: ‘The input document has exceeded a limit set by MaxCharactersFromEntities’ exception.

The Microsoft documentation (linked above) states that the default value is 0. This means that it is undefined and there is no limit in place. Through my testing, it appears that this is true for ASP.Net Framework versions up to 4.5.1. In 4.5.2 and above, as well as .Net Core, the default value for this property is 10,000,000. This is most likely a small enough value to protect against denial of service with the XmlReader object.

XSS in Script Tag

June 27, 2018 by · Comments Off on XSS in Script Tag
Filed under: Development, Security, Testing 

Cross-site scripting is a pretty common vulnerability, even with many of the new advances in UI frameworks. One of the first things we mention when discussing the vulnerability is to understand the context. Is it HTML, Attribute, JavaScript, etc.? This understanding helps us better understand the types of characters that can be used to expose the vulnerability.

In this post, I want to take a quick look at placing data within a <script> tag. In particular, I want to look at how embedded <script> tags are processed. Let’s use a simple web page as our example.

<html>
	<head>
	</head>
	<body>
	<script>
		var x = "<a href=test.html>test</a>";
	</script>
	</body>
</html>

The above example works as we expect. When you load the page, nothing is displayed. The link tag embedded in the variable is rated as a string, not parsed as a link tag. What happens, though, when we embed a <script> tag?

<html>
	<head>
	</head>
	<body>
	<script>
		var x = "<script>alert(9)</script>";
	</script>
	</body>
</html>

In the above snippet, actually nothing happens on the screen. Meaning that the alert box does not actually trigger. This often misleads people into thinking the code is not vulnerable to cross-site scripting. if the link tag is not processed, why would the script tag be. In many situations, the understanding is that we need to break out of the (“) delimiter to start writing our own JavaScript commands. For example, if I submitted a payload of (test”;alert(9);t = “). This type of payload would break out of the x variable and add new JavaScript commands. Of course, this doesn’t work if the (“) character is properly encoded to not allow breaking out.

Going back to our previous example, we may have overlooked something very simple. It wasn’t that the script wasn’t executing because it wasn’t being parsed. Instead, it wasn’t executing because our JavaScript was bad. Our issue was that we were attempting to open a <script> within a <script>. What if we modify our value to the following:

<html>
	<head>
	</head>
	<body>
	<script>
		var x = "</script><script>alert(9)</script>";
	</script>
	</body>
</html>

In the above code, we are first closing out the original <script> tag and then we are starting a new one. This removes the embedded nuance and when the page is loaded, the alert box will appear.

This technique works in many places where a user can control the text returned within the <script> element. Of course, the important remediation step is to make sure that data is properly encoded when returned to the browser. By default, Content Security Policy may not be an immediate solution since this situation would indicate that inline scripts are allowed. However, if you are limiting the use of inline scripts to ones with a registered nonce would help prevent this technique. This reference shows setting the nonce (https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src).

When testing our applications, it is important to focus on the lack of output encoding and less on the ability to fully exploit a situation. Our secure coding standards should identify the types of encoding that should be applied to outputs. If the encodings are not properly implemented then we are citing a violation of our standards.

JavaScript in an HREF or SRC Attribute

November 30, 2017 by · Comments Off on JavaScript in an HREF or SRC Attribute
Filed under: Development, Security, Testing 

The anchor (<a>) HTML tag is commonly used to provide a clickable link for a user to navigate to another page. Did you know it is also possible to set the HREF attribute to execute JavaScript. A common technique is to use the onclick event of the anchor tab to execute a JavaScript method when the user clicks the link. However, to stop the browser from actually redirecting the HREF can be set to javascript:void(0);. This cancels the HREF functionality and allows the JavaScript from the onclick to execute as expected.

In the above example, notice that the HREF is set with a value starting with “javascript:”. This identifier tells the browser to execute the code following that prefix. For those that are security savvy, you might be thinking about cross-site scripting when you hear about executing JavaScript within the browser. For those of you that are new to security, cross-site scripting refers to the ability for an attacker to execute unintended JavaScript in the context of your application (https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)).

I want to walk through a simple scenario of where this could be abused. In this scenario, the application will attempt to track the page the user came from to set up where the Cancel button will redirect to. Imagine you have a list page that allows you to view details of a specific item. When you click the item it takes you to that item page and passes a BackUrl in the query string. So the link may look like:

https://jardinesoftware.com/item.php?backUrl=/items.php

On the page, there is a hyperlink created that sets the HREF to the backUrl property, like below:

<a href=”<?php echo $_GET[“backUrl”];?>”>Back</a>

When the page executes as expected you should get an output like this:

<a href=”/items.php”>Back</a>

There is a big problem though. The application is not performing any type of output encoding to protect against cross-site scripting. If we instead pass in backUrl=”%20onclick=”alert(10); we will get the following output:

<a href=”” onclick=”alert(10);“>Back</a>

In the instance above, we have successfully inserted the onclick event by breaking out of the HREF attribute. The bold section identifies the malicious string we added. When this link is clicked it will prompt an alert box with the number 10.

To remedy this, we could (or typically) use output encoding to block the escape from the HREF attribute. For example, if we can escape the double quotes (” -> &quot; then we cannot get out of the HREF attribute. We can do this (in PHP as an example) using htmlentities() like this:

<a href=”<?php echo htmlentities($_GET[“backUrl”],ENT_QUOTES);?>”>Back</a>

When the value is rendered the quotes will be escapes like the following:

<a href=”&quot; onclick=&"alert(10);“>Back</a>

Notice in this example, the HREF actually has the entire input (in bold), rather than an onclick event actually being added. When the user clicks the link it will try to go to https://www.developsec.com/” onclick=”alert(10); rather than execute the JavaScript.

But Wait… JavaScript

It looks like we have solved the XSS problem, but there is a piece still missing. Remember at the beginning of the post how we mentioned the HREF supports the javascript: prefix? That will allow us to bypass the current encodings we have performed. This is because with using the javascript: prefix, we are not trying to break out of the HREF attribute. We don’t need to break out of the double quotes to create another attribute. This time we will set backUrl=javascript:alert(11); and we can see how it looks in the response:

<a href=”javascript:alert(11);“>Back</a>

When the user clicks on the link, the alert will trigger and display on the page. We have successfully bypassed the XSS protection initially put in place.

Mitigating the Issue

There are a few steps we can take to mitigate this issue. Each has its pros and many can be used in conjunction with each other. Pick the options that work best for your environment.

  • URL Encoding – Since the HREF is meant to be a URL, you could perform URL encoding. URL encoding will render the javascript benign in the above instances because the colon (:) will get encoded. You should be using URL encoding for URLs anyway, right?
  • Implement Content Security Policy (CSP) – CSP can help limit the ability for inline scripts to be executed. In this case, it is an inline script so something as simple as ‘Content-Security-Policy:default-src ‘self’ could be sufficient. Of course, implementing CSP requires research and great care to get it right for your application.
  • Validate the URL – It is a good idea to validate that the URL used is well formed and pointing to a relative path. If the system is unable to parse the URL then it should not be used and a default back URL can be substituted.
  • URL White Listing – Creating a white list of valid URLs for the back link can be effective at limiting what input is used by the end user. This can cut down on the values that are actually returned blocking any malicious scripts.
  • Remove javascript: – This really isn’t recommended as different encodings can make it difficult to effectively remove the string. The other techniques listed above are much more effective.

The above list is not exhaustive, but does give an idea of ways to help reduce the risk of JavaScript within the HREF attribute of a hyper link.

Iframe SRC

It is important to note that this situation also applies to the IFRAME SRC attribute. it is possible to set the SRC of an IFRAME using the javascript: notation. In doing so, the javascript executes when the page is loaded.

Wrap Up

When developing applications, make sure you take this use case into consideration if you are taking URLs from user supplied input and setting that in an anchor tag or IFrame SRC.

If you are responsible for testing applications, take note when you identify URLs in the parameters. Investigate where that data is used. If you see it is used in an anchor tag, look to see if it is possible to insert JavaScript in this manner.

For those performing static analysis or code review, look for areas where the HREF or SRC attributes are set with untrusted data and make sure proper encoding has been applied. This is less of a concern if the base path of the URL has been hard-coded and the untrusted input only makes up parameters of the URL. These should still be properly encoded.

Security Tips for Copy/Paste of Code From the Internet

February 6, 2017 by · Comments Off on Security Tips for Copy/Paste of Code From the Internet
Filed under: Development, Security 

Developing applications has long involved using code snippets found through textbooks or on the Internet. Rather than re-invent the wheel, it makes sense to identify existing code that helps solve a problem. It may also help speed up the development time.

Years ago, maybe 12, I remember a co-worker that had a SQL Injection vulnerability in his application. The culprit, code copied from someone else. At the time, I explained that once you copy code into your application it is now your responsibility.

Here, 12 years later, I still see this type of occurrence. Using code snippets directly from the web in the application. In many of these cases there may be some form of security weakness. How often do we, as developers, really analyze and understand all the details of the code that we copy?

Here are a few tips when working with external code brought into your application.

Understand what it does

If you were looking for code snippets, you should have a good idea of what the code will do. Better yet, you probably have an understanding of what you think that code will do. How vigorously do you inspect it to make sure that is all it does. Maybe the code performs the specific task you were set out to complete, but what happens if there are other functions you weren’t even looking for. This may not be as much a concern with very small snippets. However, with larger sections of code, it could coverup other functionality. This doesn’t mean that the functionality is intentionally malicious. But undocumented, unintended functionality may open up risk to the application.

Change any passwords or secrets

Depending on the code that you are searching, there may be secrets within it. For example, encryption routines are common for being grabbed off the Internet. To be complete, they contain hard-coded IVs and keys. These should be changed when imported into your projects to something unique. This could also be the case for code that has passwords or other hard-coded values that may provide access to the system.

As I was writing this, I noticed a post about the RadAsyncUpload control regarding the defaults within it. While this is not code copy/pasted from the Internet, it highlights the need to understand the default configurations and that some values should be changed to help provide better protections.

Look for potential vulnerabilities

In addition to the above concerns, the code may have vulnerabilities in it. Imagine a snippet of code used to select data from a SQL database. What if that code passed your tests of accurately pulling the queries, but uses inline SQL and is vulnerable to SQL Injection. The same could happen for code vulnerable to Cross-Site Scripting or not checking proper authorization.

We have to do a better job of performing code reviews on these external snippets, just as we should be doing it on our custom written internal code. Finding snippets of code that perform our needed functionality can be a huge benefit, but we can’t just assume it is production ready. If you are using this type of code, take the time to understand it and review it for potential issues. Don’t stop at just verifying the functionality. Take steps to vet the code just as you would any other code within your application.